Asymptotic methods for hypothesis testing in high-dimensional data usually require the dimension of the observations to increase to infinity, often with an additional relationship between the dimension (say, $p$) and the sample size (say, $n$). On the other hand, multivariate asymptotic testing methods are valid for fixed dimension only and their implementations typically require the sample size to be large compared to the dimension to yield desirable results. In practical scenarios, it is usually not possible to determine whether the dimension of the data conform to the conditions required for the validity of the high-dimensional asymptotic methods for hypothesis testing, or whether the sample size is large enough compared to the dimension of the data. In this work, we first describe the notion of uniform-over-$p$ convergences and subsequently, develop a uniform-over-dimension central limit theorem. An asymptotic test for the two-sample equality of locations is developed, which now holds uniformly over the dimension of the observations. Using simulated and real data, it is demonstrated that the proposed test exhibits better performance compared to several popular tests in the literature for high-dimensional data as well as the usual scaled two-sample tests for multivariate data, including the Hotelling's $T^2$ test for multivariate Gaussian data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
专知会员服务
55+阅读 · 2020年3月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员