Quantum error correction plays a prominent role in the realization of quantum computation, and quantum low-density parity-check (qLDPC) codes are believed to be practically useful stabilizer codes. While qLDPC codes are defined to have constant weight parity-checks, the weight of these parity checks could be large constants that make implementing these codes challenging. Large constants can also result in long syndrome extraction times and bad error propagation that can impact error correction performance. Hastings recently introduced weight reduction techniques for qLDPC codes that reduce the weight of the parity checks as well as the maximum number of checks that acts on any data qubit. However, the fault tolerance of these techniques remains an open question. In this paper, we analyze the effective distance of the weight-reduced code when single-ancilla syndrome extraction circuits are considered for error correction. We prove that there exists single-ancilla syndrome extraction circuits that largely preserve the effective distance of the weight-reduced qLDPC codes. In addition, we also show that the distance balancing technique introduced by Evra et al. preserves effective distance. As a corollary, our result shows that higher-dimensional hypergraph product (HGP) codes, also known as homological product codes corresponding to the product of 1-complexes, have no troublesome hook errors when using any single-ancilla syndrome extraction circuit.


翻译:量子纠错在实现量子计算中起着关键作用,而量子低密度奇偶校验(qLDPC)码被认为是具有实际应用价值的稳定子码。虽然qLDPC码被定义为具有恒定权重奇偶校验,但这些奇偶校验的权重可能是较大的常数,使得实现这些码具有挑战性。大常数还可能导致较长的综合征提取时间和不良的错误传播,从而影响纠错性能。Hastings最近提出了qLDPC码的权重约化技术,该技术降低了奇偶校验的权重以及作用于任何数据量子位的最大校验数。然而,这些技术的容错性仍然是一个悬而未决的问题。在本文中,我们分析了当考虑使用单辅助量子位综合征提取电路进行纠错时,权重约化码的有效距离。我们证明了存在单辅助量子位综合征提取电路,能在很大程度上保持权重约化qLDPC码的有效距离。此外,我们还展示了Evra等人提出的距离平衡技术能够保持有效距离。作为推论,我们的结果表明,高维超图积(HGP)码(也称为对应于1-复形乘积的同调积码)在使用任何单辅助量子位综合征提取电路时不存在棘手的钩状错误。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员