We consider the strongly NP-hard single-machine coupled task scheduling problem with exact delays to minimize the makespan. In this problem, a set of jobs has to be scheduled, each composed of two tasks interspersed by an exact delay. Given that no preemption is allowed, the goal consists of minimizing the completion time of the last scheduled task. We model the problem using constraint programming (CP) and propose a biased random-key genetic algorithm (BRKGA). Our CP model applies well-established global constraints. Our BRKGA combines some successful components in the literature: an initial solution generator, periodical restarts and shakes, and a local search algorithm. Furthermore, the BRKGA's decoder is focused on efficiency rather than optimality, which accelerates the solution space exploration. Computational experiments on a benchmark set containing instances with up to 100 jobs (200 tasks) indicate that the proposed BRKGA can efficiently explore the problem solution space, providing high-quality approximate solutions within low computational times. It can also provide better solutions than the CP model under the same computational settings, i.e., three minutes of time limit and a single thread. The CP model, when offered a longer running time of 3600 seconds and multiple threads, significantly improved the results, reaching the current best-known solution for 90.56% of these instances. Finally, our experiments highlight the importance of the shake and local search components in the BRKGA, whose combination significantly improves the results of a standard BRKGA.
翻译:本文研究了强NP难的带精确延迟单机耦合任务调度问题,其目标是最小化完工时间。在该问题中,需调度一组作业,每个作业由两个任务构成,且任务间需插入一个精确延迟。由于不允许抢占,目标是最小化最后一个被调度任务的完成时间。我们使用约束规划(CP)对该问题进行建模,并提出了一种偏置随机密钥遗传算法(BRKGA)。我们的CP模型应用了成熟的全局约束。所提出的BRKGA融合了文献中一些成功的组件:初始解生成器、周期性重启与扰动机制,以及局部搜索算法。此外,该BRKGA的解码器侧重于效率而非最优性,从而加速了解空间的探索。在包含多达100个作业(200个任务)的基准实例集上的计算实验表明,所提出的BRKGA能够高效探索问题的解空间,在较短的计算时间内提供高质量的近似解。在相同的计算设置下(即三分钟时间限制和单线程运行),该算法也能提供优于CP模型的解。当给予CP模型更长的运行时间(3600秒)和多线程支持时,其结果得到显著改善,对90.56%的实例达到了当前已知最优解。最后,我们的实验凸显了BRKGA中扰动机制与局部搜索组件的重要性,二者的结合显著提升了标准BRKGA的性能。