We consider classes of arbitrary (finite or infinite) graphs of bounded shrub-depth, specifically the class $\mathrm{TM}_{r, p}(d)$ of $p$-labeled arbitrary graphs whose underlying unlabeled graphs have tree models of height $d$ and $r$ labels. We show that this class satisfies an extension of the classical L\"owenheim-Skolem property into the finite and for $\mathrm{MSO}$. This extension being a generalization of the small model property, we obtain that the graphs of $\mathrm{TM}_{r, p}(d)$ are pseudo-finite. In addition, we obtain as consequences entirely new proofs of a number of known results concerning bounded shrub-depth classes (of finite graphs) and $\mathrm{TM}_{r, p}(d)$. These include the small model property for $\mathrm{MSO}$ with elementary bounds, the classical compactness theorem from model theory over $\mathrm{TM}_{r, p}(d)$, and the equivalence of $\mathrm{MSO}$ and $\mathrm{FO}$ over $\mathrm{TM}_{r, p}(d)$ and hence over bounded shrub-depth classes. The proof for the last of these is via an adaptation of the proof of the classical Lindstr\"om's theorem characterizing $\mathrm{FO}$ over arbitrary structures.
翻译:我们考虑任意( 无限或无限) 约束灌木深度的图表类别, 具体为 $\ mathrm{ TM{ r, p} (d) 美元标签的任意图表类别, 其底底部未贴标签的图表具有树形高度模型 $d$ 和 $ 美元标签。 我们显示, 此类符合经典L\ “ owenheim- Skolem 属性在限制和 $\ mathrm{ MSO} 的延伸。 这个扩展是小模型属性的概括化, 我们得到的是 $ mathrm{ TM{ r, p} (d) 标有 $ mathrm{ $, 标有 美元 美元 的缩略缩略图的缩略图 。