Video moderation, which refers to remove deviant or explicit content from e-commerce livestreams, has become prevalent owing to social and engaging features. However, this task is tedious and time consuming due to the difficulties associated with watching and reviewing multimodal video content, including video frames and audio clips. To ensure effective video moderation, we propose VideoModerator, a risk-aware framework that seamlessly integrates human knowledge with machine insights. This framework incorporates a set of advanced machine learning models to extract the risk-aware features from multimodal video content and discover potentially deviant videos. Moreover, this framework introduces an interactive visualization interface with three views, namely, a video view, a frame view, and an audio view. In the video view, we adopt a segmented timeline and highlight high-risk periods that may contain deviant information. In the frame view, we present a novel visual summarization method that combines risk-aware features and video context to enable quick video navigation. In the audio view, we employ a storyline-based design to provide a multi-faceted overview which can be used to explore audio content. Furthermore, we report the usage of VideoModerator through a case scenario and conduct experiments and a controlled user study to validate its effectiveness.
翻译:视频节奏是指从电子商务活流中消除异常或清晰内容,由于社交和吸引性特点,这种节奏已经变得盛行,但由于在观看和审查多式视频内容,包括视频框架和音频剪辑方面存在困难,这一任务既乏味又耗时。为了确保有效的视频节奏,我们提议视频模拟器,这是一个风险意识框架,将人类知识与机器洞察无缝地结合起来。这个框架包含一套先进的机器学习模型,从多式视频内容中提取风险觉察特征,并发现潜在的异常视频。此外,这个框架还引入了一个互动式可视化界面,有三个观点,即视频视图、框架视图和音频视图。在视频视图中,我们采用一个条块化的时间表,并突出可能包含异常信息的高风险时期。在框架视图中,我们提出了一个新型的视觉总结方法,将风险觉察特征和视频背景结合起来,以便快速视频导航。在音频视图中,我们采用了基于故事的设计,以提供一个多面概览,可用于探索音频内容。此外,我们通过用户的实验和测试,我们报告使用一个控制使用视频模式案例的使用情况。