Previous studies on robustness have argued that there is a tradeoff between accuracy and adversarial accuracy. The tradeoff can be inevitable even when we neglect generalization. We argue that the tradeoff is inherent to the commonly used definition of adversarial accuracy, which uses an adversary that can construct adversarial points constrained by $\epsilon$-balls around data points. As $\epsilon$ gets large, the adversary may use real data points from other classes as adversarial examples. We propose a Voronoi-epsilon adversary which is constrained both by Voronoi cells and by $\epsilon$-balls. This adversary balances between two notions of perturbation. As a result, adversarial accuracy based on this adversary avoids a tradeoff between accuracy and adversarial accuracy on training data even when $\epsilon$ is large. Finally, we show that a nearest neighbor classifier is the maximally robust classifier against the proposed adversary on the training data.


翻译:以往关于稳健性的研究认为,准确性和对抗性准确性之间是权衡的。即使我们忽略了一般化,这种权衡也是不可避免的。我们争辩说,这种权衡性是常用的对抗性准确性定义所固有的。 对抗性准确性定义使用一个对手,可以在数据点周围构建受美元-美元-球制约的对立点。随着美元数额的提高,对手可以使用其他类别的真实数据点作为抗辩性例子。我们提议了Voronio-epsilon对立的Voronioi-epsilon对立,但受到Voronoi细胞和美元-球的制约。这种对立性对立性平衡是两种对立概念之间的平衡。因此,基于这一对手的对抗性准确性避免了培训数据在准确性和对抗性对立性精确性之间的权衡,即使$-美元数额很大。最后,我们表明,最近的邻居分类是针对拟议培训数据对手的最有力的分类。

1
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【WWW2021】本体增强零样本学习
专知会员服务
33+阅读 · 2021年2月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2020年10月22日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
12+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2020年10月22日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
4+阅读 · 2015年3月20日
Top
微信扫码咨询专知VIP会员