Using commodity WiFi data for applications such as indoor localization, object identification and tracking and channel sounding has recently gained considerable attention. We study the problem of channel impulse response (CIR) estimation from commodity WiFi channel state information (CSI). The accuracy of a CIR estimation method in this setup is limited by both the available channel bandwidth as well as various CSI distortions induced by the underlying hardware. We propose a multi-band splicing method that increases channel bandwidth by combining CSI data across multiple frequency bands. In order to compensate for the CSI distortions, we develop a per-band processing algorithm that is able to estimate the distortion parameters and remove them to yield the "clean" CSI. This algorithm incorporates the atomic norm denoising sparse recovery method to exploit channel sparsity. Splicing clean CSI over M frequency bands, we use orthogonal matching pursuit (OMP) as an estimation method to recover the sparse CIR with high (M-fold) resolution. Unlike previous works in the literature, our method does not appeal to any limiting assumption on the CIR (other than the widely accepted sparsity assumption) or any ad hoc processing for distortion removal. We show, empirically, that the proposed method outperforms the state of the art in terms of localization accuracy.
翻译:利用商品 WiFi 数据进行室内本地化、物体识别、跟踪和信道探测等应用程序的WiFi 数据最近引起相当重视。我们研究了商品 WiFi 频道国家信息(CSI)对频道脉冲反应的估计问题。在这个设置中,CIR估计方法的准确性受到现有频道带宽以及基础硬件引起的各种CSI扭曲的限制。我们提出了一个多波段扩展方法,通过将多频带CSI数据合并,增加频道带宽。为了弥补CSI扭曲,我们开发了一种每波段处理算法,能够估计扭曲参数,并消除这些参数以产生“清洁” CSI。这一算法纳入了原子规范,对稀有恢复方法进行稀有恢复,以利用频道宽度频带,我们使用或线性匹配追踪(OMP)作为估计方法,以高分辨率恢复稀有的CIR。与文献中的以往工作不同,我们的方法并不吸引任何关于CIR(除广泛接受的孔径假设之外)或任何局部扭曲的CSI假设。这种算法纳入了利用频道的原始方法,我们提出了关于扭曲的精确性处理方法。我们展示了对当地分析方法。