Neural networks capable of accurate, input-conditional uncertainty representation are essential for real-world AI systems. Deep ensembles of Gaussian networks have proven highly effective for continuous regression due to their ability to flexibly represent aleatoric uncertainty via unrestricted heteroscedastic variance, which in turn enables accurate epistemic uncertainty estimation. However, no analogous approach exists for count regression, despite many important applications. To address this gap, we propose the Deep Double Poisson Network (DDPN), a novel neural discrete count regression model that outputs the parameters of the Double Poisson distribution, enabling arbitrarily high or low predictive aleatoric uncertainty for count data and improving epistemic uncertainty estimation when ensembled. We formalize and prove that DDPN exhibits robust regression properties similar to heteroscedastic Gaussian models via learnable loss attenuation, and introduce a simple loss modification to control this behavior. Experiments on diverse datasets demonstrate that DDPN outperforms current baselines in accuracy, calibration, and out-of-distribution detection, establishing a new state-of-the-art in deep count regression.
翻译:能够准确表示输入条件不确定性的神经网络对于现实世界的人工智能系统至关重要。高斯网络深度集成已被证明在连续回归任务中极为有效,因为它们能够通过无限制的异方差方差灵活表示任意不确定性,进而实现准确的认知不确定性估计。然而,尽管存在许多重要应用场景,计数回归领域尚未出现类似的有效方法。为填补这一空白,我们提出深度双泊松网络——一种新颖的神经离散计数回归模型,该模型输出双泊松分布的参数,能够为计数数据实现任意高或低的预测任意不确定性,并在集成时改进认知不确定性估计。我们通过可学习的损失衰减机制,形式化证明并论证了DDPN具有与异方差高斯模型相似的稳健回归特性,同时引入简单的损失函数修正来控制这一行为。在多样化数据集上的实验表明,DDPN在准确性、校准度和分布外检测方面均优于当前基线方法,为深度计数回归确立了新的技术标杆。