Adversarial patch attacks mislead neural networks by injecting adversarial pixels within a local region. Patch attacks can be highly effective in a variety of tasks and physically realizable via attachment (e.g. a sticker) to the real-world objects. Despite the diversity in attack patterns, adversarial patches tend to be highly textured and different in appearance from natural images. We exploit this property and present PatchZero, a general defense pipeline against white-box adversarial patches without retraining the downstream classifier or detector. Specifically, our defense detects adversaries at the pixel-level and "zeros out" the patch region by repainting with mean pixel values. We further design a two-stage adversarial training scheme to defend against the stronger adaptive attacks. PatchZero achieves SOTA defense performance on the image classification (ImageNet, RESISC45), object detection (PASCAL VOC), and video classification (UCF101) tasks with little degradation in benign performance. In addition, PatchZero transfers to different patch shapes and attack types.


翻译:局部地区通过注射对抗性象素,使神经网络误入反向补丁。 补丁攻击在各种任务中非常有效,并且可以通过对真实世界物体的附加物(例如贴纸)实现。 尽管攻击模式多种多样,对抗性补丁往往具有高度的纹理和与自然图像不同的外观。 我们利用这种特性并展示了帕奇泽罗,这是对抗白箱对抗性对立补丁的一般防御管道,没有再培训下游分类器或探测器。 具体地说,我们的防卫通过用中等值重新油漆来探测补丁区域的对手和“零”。 我们还设计了两阶段对抗性对抗性训练计划,以抵御更强的适应性攻击。 帕奇泽罗在图像分类( ImageNet, RESISC45) 、 物体探测( PASCAL VOC) 和视频分类( UCF101) 任务中,其良性效果不差。此外, PatchZero还向不同的补丁形状和攻击类型转移。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
12+阅读 · 2020年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员