I consider the estimation of the average treatment effect (ATE), in a population that can be divided into $G$ groups, and such that one has unbiased and uncorrelated estimators of the conditional average treatment effect (CATE) in each group. These conditions are for instance met in stratified randomized experiments. I assume that the outcome is homoscedastic, and that each CATE is bounded in absolute value by $B$ standard deviations of the outcome, for some known constant $B$. I derive, across all linear combinations of the CATEs' estimators, the estimator of the ATE with the lowest worst-case mean-squared error. This optimal estimator assigns a weight equal to group $g$'s share in the population to the most precisely estimated CATEs, and a weight proportional to one over the CATE's variance to the least precisely estimated CATEs. This optimal estimator is feasible: the weights only depend on known quantities. I then allow for positive covariances known up to the outcome's variance between the estimators. This condition is met in differences-in-differences designs, if errors are homoscedastic and uncorrelated. Under those assumptions, I show that the minimax estimator is still feasible and can easily be computed.


翻译:我考虑对平均治疗效果(ATE)的估计,这个人群可以分为G$组,并且拥有每个人群中不偏袒和不相关的有条件平均治疗效应(CATE)的不偏差估计值。这些条件在分层随机实验中得到满足。我假设结果是同质的,每个CATE的绝对值以结果标准差数($B$标准差数)的约束,这个已知的常数为$B$。我从CATE的测算员的所有线性组合中得出,这个测算员的测算员是最不偏差的平均差。这个最佳的估测员给人口中美元份额的比重等于最精确估计的CATE的组数,比CATE差的绝对值以美元标准差为准,这个最佳估测数是可行的:重量仅取决于已知的数量。然后允许在结果差异上已知的最差值的ATE测算员,这个最佳估测算员的比重等于在最精确的CATETATE的组数组数中所占的组数,这个比重比重比重相当于CATEAT值,这个比值比值比值比值比值比值比值比值是最小的,这个比值是最小的,这个比值是最小的,这个比值可以满足。这个比值是最小的,这个比值为最小的,这个比值可以算算算算算算算,这个比值是最小的,这个比值是最小的,这个比值是最小的,如果是最小的, 和最差是最小的假设的, 和最差是比值是比值是比值是最小的。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年1月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
8+阅读 · 2019年1月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员