Deep Neural Networks (DNNs) have become ubiquitous in medical image processing and analysis. Among them, U-Nets are very popular in various image segmentation tasks. Yet, little is known about how information flows through these networks and whether they are indeed properly designed for the tasks they are being proposed for. In this paper, we employ information-theoretic tools in order to gain insight into information flow through U-Nets. In particular, we show how mutual information between input/output and an intermediate layer can be a useful tool to understand information flow through various portions of a U-Net, assess its architectural efficiency, and even propose more efficient designs.


翻译:深神经网络(DNNS)在医学图像处理和分析中变得无处不在,其中U-Net在各种图像分割任务中非常受欢迎。然而,对于信息如何通过这些网络流动,以及它们是否确实为拟议任务设计得当,人们知之甚少。在本文中,我们使用信息理论工具来深入了解通过U-Net的信息流动。特别是,我们展示了输入/产出和中间层之间的相互信息如何成为了解通过U-Net各个部分的信息流动、评估其建筑效率、甚至提出更高效的设计的有用工具。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!CMU《深度学习导论》2020课程,附课件与视频
专知会员服务
79+阅读 · 2020年10月27日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
38+阅读 · 2020年12月2日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Fast AutoAugment
Arxiv
5+阅读 · 2019年5月1日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员