We consider the regression problem where the dependence of the response Y on a set of predictors X is fully captured by the regression function E(Y | X)=g(B'X), for an unknown function g and low rank parameter B matrix. We combine neural networks with sufficient dimension reduction in order to remove the limitation of small p and n of the latter. We show in simulations that the proposed estimator is on par with competing sufficient dimension reduction methods in small p and n settings, such as minimum average variance estimation and conditional variance estimation. Among those, it is the only computationally applicable in large p and n problems.


翻译:我们考虑了回归问题,因为一个未知的函数g和低级参数B矩阵,Y对一组预测器X的响应依赖性完全被回归函数E(Y) ⁇ X=g(B'X) 充分吸收。我们把神经网络与足够的维度减少结合起来,以便消除小p和小n的限制。我们在模拟中显示,拟议的估计值与小p和小n环境中的足够维度减少方法相匹配,如最小平均差异估计和有条件差异估计。其中,这是唯一适用于大p和小n问题的计算方法。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
78+阅读 · 2021年1月25日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
已删除
将门创投
5+阅读 · 2018年2月28日
Arxiv
0+阅读 · 2021年6月9日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2018年2月28日
Top
微信扫码咨询专知VIP会员