Clinical notes contain information not present elsewhere, including drug response and symptoms, all of which are highly important when predicting key outcomes in acute care patients. We propose the automatic annotation of phenotypes from clinical notes as a method to capture essential information to predict outcomes in the Intensive Care Unit (ICU). This information is complementary to typically used vital signs and laboratory test results. We demonstrate and validate our approach conducting experiments on the prediction of in-hospital mortality, physiological decompensation and length of stay in the ICU setting for over 24,000 patients. The prediction models incorporating phenotypic information consistently outperform the baseline models leveraging only vital signs and laboratory test results. Moreover, we conduct a thorough interpretability study, showing that phenotypes provide valuable insights at the patient and cohort levels. Our approach illustrates the viability of using phenotypes to determine outcomes in the ICU.
翻译:临床说明包含在其他地方没有的信息,包括药物反应和症状,所有这些在预测急性护理病人的关键结果时都非常重要。我们建议从临床说明中自动注解苯型,作为获取基本信息的方法,以预测重症护理单位的结果。这种信息是对通常使用的生命迹象和实验室试验结果的补充。我们展示并验证了我们为24 000多名病人进行住院死亡率预测、生理损害和在重症监护室停留时间试验的方法。包含眼部信息的预测模型始终比基线模型的完善要强,我们只利用生命迹象和实验室试验结果。此外,我们进行了彻底的可解释性研究,表明苯型在病人和组群中提供了宝贵的洞见。我们的方法表明使用苯型在重症监护室中确定结果的可行性。