Segment anything model (SAM) has demonstrated excellent generalization capabilities in common vision scenarios, yet lacking an understanding of specialized data. Although numerous works have focused on optimizing SAM for downstream tasks, these task-specific approaches usually limit the generalizability to other downstream tasks. In this paper, we aim to investigate the impact of the general vision modules on finetuning SAM and enable them to generalize across all downstream tasks. We propose a simple unified framework called SimAda for adapting SAM in underperformed scenes. Specifically, our framework abstracts the general modules of different methods into basic design elements, and we design four variants based on a shared theoretical framework. SimAda is simple yet effective, which removes all dataset-specific designs and focuses solely on general optimization, ensuring that SimAda can be applied to all SAM-based and even Transformer-based models. We conduct extensive experiments on nine datasets of six downstream tasks. The results demonstrate that SimAda significantly improves the performance of SAM on multiple downstream tasks and achieves state-of-the-art performance on most of them, without requiring task-specific designs. Code is available at: https://github.com/zongzi13545329/SimAda
翻译:暂无翻译