The growing number of Internet users and the prevalence of web applications make it necessary to deal with very complex software and applications in the network. This results in an increasing number of new vulnerabilities in the systems, and leading to an increase in cyber threats and, in particular, zero-day attacks. The cost of generating appropriate signatures for these attacks is a potential motive for using machine learning-based methodologies. Although there are many studies on using learning-based methods for attack detection, they generally use extracted features and overlook raw contents. This approach can lessen the performance of detection systems against content-based attacks like SQL injection, Cross-site Scripting (XSS), and various viruses. In this work, we propose a framework, called deep intrusion detection (DID) system, that uses the pure content of traffic flows in addition to traffic metadata in the learning and detection phases of a passive DNN IDS. To this end, we deploy and evaluate an offline IDS following the framework using LSTM as a deep learning technique. Due to the inherent nature of deep learning, it can process high dimensional data content and, accordingly, discover the sophisticated relations between the auto extracted features of the traffic. To evaluate the proposed DID system, we use the CIC-IDS2017 and CSE-CIC-IDS2018 datasets. The evaluation metrics, such as precision and recall, reach $0.992$ and $0.998$ on CIC-IDS2017, and $0.933$ and $0.923$ on CSE-CIC-IDS2018 respectively, which show the high performance of the proposed DID method.


翻译:互联网用户数量不断增加,网络应用程序普及,因此有必要处理网络中非常复杂的软件和应用,这导致这些系统中新的弱点越来越多,导致网络威胁增加,特别是零天袭击增加。为这些袭击制作适当签名的费用是使用基于机器学习的方法的潜在动机。虽然有许多关于使用基于学习的方法探测袭击的检测方法的研究,但通常使用提取的特征和忽略原始内容。这一方法可以降低对SQL注射、跨地点Sripting(XSS)和各种病毒等基于内容的袭击的检测系统的性能。在这项工作中,我们提出了一个框架,称为深度入侵探测(DID)系统,在被动的DNNIS的学习和检测阶段使用纯交通流量数据元数据。为此,我们部署并评价了以LSTM为深层次学习技术的离线性信息数据集。由于深层次学习的性质,它可以处理高层次数据内容,并因此,我们发现了在CSEIC.90-IS的自动提取特征和CSEIS的精确性能评估系统,例如CSEADRSS的绩效评估,以及CS. 2020美元。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员