Datamation is designed to animate an analysis pipeline step by step, which is an intuitive and effective way to interpret the results from data analysis. However, creating a datamation is not easy. A qualified datamation needs to not only provide a correct analysis result but also ensure that the data flow and animation are coherent. Existing animation authoring tools focus on either leveraging algorithms to automatically generate an animation based on user-provided charts or building graphical user interfaces to provide a programming-free authoring environment for users. None of them are able to help users translate an analysis task into a series of data operations to form an analysis pipeline and visualize them as a datamation. To fill this gap, we introduce Datamator, an intelligent authoring tool developed to support datamation design and generation. It leverages a novel data query decomposition model to allow users to generate an initial datamation by simply inputting a data query in natural language. The initial datamation can be refined via rich interactions and a feedback mechanism is utilized to update the decomposition model based on user knowledge and preferences. Our system produces an animated sequence of visualizations driven by a set of low-level data actions. It supports unit visualizations, which provide a mapping from each data item to a unique visual mark. We demonstrate the effectiveness of Datamator via a series of evaluations including case studies, performance validation, and a controlled user study.
翻译:Datamation旨在逐步动画化分析管道,这是一种直观有效的解释数据分析结果的方式。然而,创建一个合格的Datamation并不容易。合格的Datamation不仅需要提供正确的分析结果,而且还需要确保数据流和动画连贯。现有的动画创作工具要么专注于利用算法根据用户提供的图表自动生成动画,要么构建图形用户界面为用户提供无需编程的创作环境。它们都无法帮助用户将分析任务转化为一系列数据操作,以形成分析管道并将它们可视化为Datamation。为了填补这一空白,我们推出了“Datamator”,一种智能创作工具,旨在支持Datamation的设计和生成。它利用一种新颖的数据查询分解模型,允许用户通过自然语言输入数据查询,以生成初始Datamation。初始Datamation可以通过丰富的交互进行改进,并利用反馈机制基于用户知识和喜好更新分解模型。我们的系统生成一系列由一组低级数据操作驱动的可视化序列。它支持单位可视化,为每个数据项提供到唯一可视标记的映射。我们通过一系列评估,包括案例研究、性能验证和受控用户研究,证明了Datamator的有效性。