While search technologies have evolved to be robust and ubiquitous, the fundamental interaction paradigm has remained relatively stable for decades. With the maturity of the Brain-Machine Interface, we build an efficient and effective communication system between human beings and search engines based on electroencephalogram~(EEG) signals, called Brain-Machine Search Interface(BMSI) system. The BMSI system provides functions including query reformulation and search result interaction. In our system, users can perform search tasks without having to use the mouse and keyboard. Therefore, it is useful for application scenarios in which hand-based interactions are infeasible, e.g, for users with severe neuromuscular disorders. Besides, based on brain signals decoding, our system can provide abundant and valuable user-side context information(e.g., real-time satisfaction feedback, extensive context information, and a clearer description of information needs) to the search engine, which is hard to capture in the previous paradigm. In our implementation, the system can decode user satisfaction from brain signals in real-time during the interaction process and re-rank the search results list based on user satisfaction feedback. The demo video is available at http://www.thuir.cn/group/YQLiu/datasets/BMSISystem.mp4.


翻译:虽然搜索技术已经演变为稳健和无处不在,但基本的互动模式几十年来一直相对稳定。随着脑-海洋界面的成熟,我们在人与基于电子脑图~(EEG)信号的搜索引擎之间建立了高效和有效的通信系统,该系统被称为脑-海洋搜索界面系统。BMSI系统提供功能,包括查询重新拟订和搜索结果互动。在我们的系统中,用户可以不必使用鼠标和键盘即可执行搜索任务。因此,该系统对于无法进行手基互动的应用情景是有用的,例如,对于患有严重神经肌肉障碍的用户来说。此外,根据大脑信号解码,我们的系统可以向搜索引擎提供丰富和宝贵的用户方背景信息(例如实时满意度反馈、广泛的背景信息,以及更清楚地描述信息需求),而这些功能在以往的范例中很难捕捉到。在我们的实施中,该系统可以在互动过程中从实时的大脑信号中解码用户满意度,并在用户满意度4 /RMISM/Q 的用户满意度反馈基础上将搜索结果列表重新排序。在用户满意度/RMISM/RDA上可提供的视频。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
37+阅读 · 2021年4月27日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年11月29日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年4月27日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
相关论文
Arxiv
4+阅读 · 2021年11月29日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员