In this paper, we propose a novel and efficient two-stage variable selection approach for sparse GLARMA models, which are pervasive for modeling discrete-valued time series. Our approach consists in iteratively combining the estimation of the autoregressive moving average (ARMA) coefficients of GLARMA models with regularized methods designed for performing variable selection in regression coefficients of Generalized Linear Models (GLM). We first establish the consistency of the ARMA part coefficient estimators in a specific case. Then, we explain how to efficiently implement our approach. Finally, we assess the performance of our methodology using synthetic data, compare it with alternative methods and illustrate it on an example of real-world application. Our approach, which is implemented in the GlarmaVarSel R package and available on the CRAN, is very attractive since it benefits from a low computational load and is able to outperform the other methods in terms of coefficient estimation, particularly in recovering the non null regression coefficients.
翻译:在本文中,我们为稀有的GLARMA模型提出了一个创新而高效的两阶段变量选择方法,这些模型在模拟离散估值时间序列方面十分普遍。我们的方法是,将GLARMA模型自动递减平均系数(ARMA)的估算与常规方法相结合,用于在通用线性模型(GLM)的回归系数(GLM)中进行变量选择。我们首先确定在特定情况下ARMA部分系数估计器的一致性。然后,我们解释如何有效执行我们的方法。最后,我们评估了我们使用合成数据的方法的绩效,将其与替代方法进行比较,并以现实世界应用的范例来说明。我们的方法在GlarmaVarSel R软件包中实施,并可在CRAN上查阅,非常有吸引力,因为它受益于低计算负荷,并且能够在系数估计方面超越其他方法,特别是在恢复非无效回归系数方面。