The problem of multivalued consensus is fundamental in the area of fault-tolerant distributed computing since it abstracts a very broad set of agreement problems in which processes have to uniformly decide on a specific value v in V, where |V| >1. Existing solutions (that tolerate process failures) reduce the multivalued consensus problem to the one of binary consensus, e.g., Mostefaoui-Raynal-Tronel and Zhang-Chen. Our study aims at the design of an even more reliable solution. We do so through the lenses of self-stabilization -- a very strong notion of fault-tolerance. In addition to node and communication failures, self-stabilizing algorithms can recover after the occurrence of arbitrary transient-faults; these faults represent any violation of the assumptions according to which the system was designed to operate (as long as the algorithm code stays intact). This work proposes the first (to the best of our knowledge) self-stabilizing algorithm for multivalued consensus for asynchronous message-passing systems prone to process failures and arbitrary transient-faults. Our solution is also the first (to the best of our knowledge) to support wait-freedom. Moreover, using piggybacking techniques, our solution can invoke n binary consensus objects concurrently. Thus, the proposed self-stabilizing wait-free solution can terminate using fewer resources than earlier non-self-stabilizing solutions by Mostefaoui, Raynal, and Tronel, which uses an unbounded number of binary consensus objects, or Zhang and Chen, which is not wait-free.
翻译:多重价值的共识问题在分解错误的计算领域具有根本意义,因为它总结了一套非常广泛的协议问题,在这些协议问题上,各进程必须一致地决定具体价值与V中的具体价值,而V中“V”++++++++++>1.现有解决方案(容忍过程失败的解决方案)将多价值的共识问题减为二元共识问题,例如Mostefaoui-Raynal-Tronel和Zhang-Chen。我们的研究旨在设计一个更可靠的解决方案。我们通过自我稳定化的视角来这样做,这种视角是自我稳定起来的,而自我稳定的概念则是自我稳定的概念。除了不失败和沟通失败之外,自我稳定算法的算法还可以在发生任意的瞬间断错误之后恢复;这些缺陷代表着对系统设计要运行的假设的任何违反(只要算法代码保持不变 ) 。 这项工作提出了第一个(我们所了解的最好) 自我稳定地算法, 以多价值的共识实现多值的共识, 即自我稳定化的系统容易发生过程失败和任意性不易变错。 我们的算法的算法的算法的算法, 最可靠的方法可以先用最可靠的方法, 使用最可靠的方法, 也可以使用自我稳定地使用自我稳定的方法,,, 也使用最可靠地使用自我稳定的方法,最容易地使用自我稳定的方法, 也使用最可靠地使用最可靠地使用自我稳定的方法, 。