We uncover networks from news articles to study cross-sectional stock returns. By analyzing a huge dataset of more than 1 million news articles collected from the internet, we construct time-varying directed networks of the S&P500 stocks. The well-defined directed news networks are formed based on a modest assumption about firm-specific news structure, and we propose an algorithm to tackle type-I errors in identifying the stock tickers. We find strong evidence for the comovement effect between the news-linked stocks returns and reversal effect from the lead stock return on the 1-day ahead follower stock return, after controlling for many known effects. Furthermore, a series of portfolio tests reveal that the news network attention proxy, network degree, provides a robust and significant cross-sectional predictability of the monthly stock returns. Among different types of news linkages, the linkages of within-sector stocks, large size lead firms, and lead firms with lower stock liquidity are crucial for cross-sectional predictability.
翻译:我们从新闻文章中发现网络以研究跨部门股票回报。 通过分析从互联网收集的100多万条新闻文章的庞大数据集,我们建立了S & P500股票有时间分布的定向网络。 定义明确的定向新闻网络是根据对特定公司新闻结构的适度假设而形成的,我们提出一种算法来解决在识别股票滴答器时的一型错误。 我们找到了强有力的证据,证明在控制许多已知效果之后,与新闻相关的股票回报和领先股票回报对未来1天后续股票回报的逆转效应之间产生了共鸣效应。 此外,一系列组合测试显示,新闻网络的注意力代理(网络程度)提供了每月股票回报的有力和重要的跨部门可预测性。 在不同类型的新闻联系中,部门内股票、大型领先公司和股票流动性较低的牵头公司之间的联系对于跨部门可预测性至关重要。