Annealed Importance Sampling (AIS) and its Sequential Monte Carlo (SMC) extensions are state-of-the-art methods for estimating normalizing constants of probability distributions. We propose here a novel Monte Carlo algorithm, Annealed Flow Transport (AFT), that builds upon AIS and SMC and combines them with normalizing flows (NFs) for improved performance. This method transports a set of particles using not only importance sampling (IS), Markov chain Monte Carlo (MCMC) and resampling steps - as in SMC, but also relies on NFs which are learned sequentially to push particles towards the successive annealed targets. We provide limit theorems for the resulting Monte Carlo estimates of the normalizing constant and expectations with respect to the target distribution. Additionally, we show that a continuous-time scaling limit of the population version of AFT is given by a Feynman--Kac measure which simplifies to the law of a controlled diffusion for expressive NFs. We demonstrate experimentally the benefits and limitations of our methodology on a variety of applications.
翻译:Anneal Streaty Smalling (AIS) 及其序列式蒙特卡洛(SMC) 扩展是估算概率分布常数的最先进方法。 我们在此提出一个新的蒙特卡洛算法(Annaaled Flow Transport (AFT ) ), 以AIS 和 SMC 为基础, 并将之与正常流(NFs) 相结合, 以提高性能。 这种方法传输一系列粒子, 不仅使用重要取样(IS)、 Markov 链子 Monte Carlo (MC ) 和抽取步骤( SMC ), 而且还依赖不断学习的NF, 将粒子推向连续的麻醉目标分布。 我们为由此得出的蒙特卡洛对目标分布的常数和期望的正常化估计提供了限制参数。 此外, 我们表明, Feynman-Kac 测量了AFT 人口版本的连续时间缩放限制, 它简化了表达式NFs的受控扩散法。 我们实验地展示了我们方法在各种应用上的好处和局限性。