Reconfigurable massive multiple-input multiple-output (RmMIMO), as an electronically-controlled fluid antenna system, offers increased flexibility for future communication systems by exploiting previously untapped degrees of freedom in the electromagnetic (EM) domain. The representation of the traditional spatial domain channel state information (sCSI) limits the insights into the potential of EM domain channel properties, constraining the base station's (BS) utmost capability for precoding design. This paper leverages the EM domain channel state information (eCSI) for antenna radiation pattern design at the BS. We develop an orthogonal decomposition method based on spherical harmonic functions to decompose the radiation pattern into a linear combination of orthogonal bases. By formulating the radiation pattern design as an optimization problem for the projection coefficients over these bases, we develop a manifold optimization-based method for iterative radiation pattern and digital precoder design. To address the eCSI estimation problem, we capitalize on the inherent structure of the channel. Specifically, we propose a subspace-based scheme to reduce the pilot overhead for wideband sCSI estimation. Given the estimated full-band sCSI, we further employ parameterized methods for angle of arrival estimation. Subsequently, the complete eCSI can be reconstructed after estimating the equivalent channel gain via the least squares method. Simulation results demonstrate that, in comparison to traditional mMIMO systems with fixed antenna radiation patterns, the proposed RmMIMO architecture offers significant throughput gains for multi-user transmission at a low channel estimation overhead.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员