This dissertation proposes a framework of user-centered security in Natural Language Processing (NLP), and demonstrates how it can improve the accessibility of related research. Accordingly, it focuses on two security domains within NLP with great public interest. First, that of author profiling, which can be employed to compromise online privacy through invasive inferences. Without access and detailed insight into these models' predictions, there is no reasonable heuristic by which Internet users might defend themselves from such inferences. Secondly, that of cyberbullying detection, which by default presupposes a centralized implementation; i.e., content moderation across social platforms. As access to appropriate data is restricted, and the nature of the task rapidly evolves (both through lexical variation, and cultural shifts), the effectiveness of its classifiers is greatly diminished and thereby often misrepresented. Under the proposed framework, we predominantly investigate the use of adversarial attacks on language; i.e., changing a given input (generating adversarial samples) such that a given model does not function as intended. These attacks form a common thread between our user-centered security problems; they are highly relevant for privacy-preserving obfuscation methods against author profiling, and adversarial samples might also prove useful to assess the influence of lexical variation and augmentation on cyberbullying detection.


翻译:这一论文提出了自然语言处理中以用户为中心的安全框架,并展示了如何改善相关研究的可获取性。因此,它侧重于自然语言处理中的两个安全领域,具有巨大的公众利益。首先,作者特征分析可以用来通过侵入性推断损害在线隐私。在没有访问和详细了解这些模型的预测的情况下,互联网用户可能用来保护自己不受这种推理的影响是没有道理的。其次,网络欺凌检测(默认情况下以集中实施为先决条件);即社会平台之间的内容节制。由于对适当数据的获取受到限制,以及任务的性质迅速演变(通过法律变异和文化转变),其分类者的有效性大为削弱,因此往往被歪曲。根据拟议框架,我们主要调查对语言使用对抗性攻击的情况,即改变给定的输入(产生对抗性样本),使特定模型无法发挥预期的作用。这些袭击是我们以用户为中心的安全平台之间的一个共同线索。这些攻击构成了我们以用户为中心的安全问题,而任务的性质也迅速演变(通过法律变换和文化变换),因此,其分类者的有效性被大大削弱,因此往往被曲解语言;我们主要调查了某种特定模式(即改变),从而无法发挥预期的作用。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员