We develop an all-at-once modeling framework for learning systems of ordinary differential equations (ODE) from scarce, partial, and noisy observations of the states. The proposed methodology amounts to a combination of sparse recovery strategies for the ODE over a function library combined with techniques from reproducing kernel Hilbert space (RKHS) theory for estimating the state and discretizing the ODE. Our numerical experiments reveal that the proposed strategy leads to significant gains in terms of accuracy, sample efficiency, and robustness to noise, both in terms of learning the equation and estimating the unknown states. This work demonstrates capabilities well beyond existing and widely used algorithms while extending the modeling flexibility of other recent developments in equation discovery.
翻译:我们开发了一种一体化建模框架,用于从稀疏、部分且含噪声的状态观测中学习常微分方程(ODE)系统。所提出的方法结合了针对函数库中ODE的稀疏恢复策略,以及来自再生核希尔伯特空间(RKHS)理论的状态估计与ODE离散化技术。我们的数值实验表明,该策略在方程学习和未知状态估计方面,显著提升了准确性、样本效率及对噪声的鲁棒性。这项工作展示了远超现有广泛使用算法的能力,同时扩展了近期方程发现研究中其他进展的建模灵活性。