The proliferation of highly realistic singing voice deepfakes presents a significant challenge to protecting artist likeness and content authenticity. Automatic singer identification in vocal deepfakes is a promising avenue for artists and rights holders to defend against unauthorized use of their voice, but remains an open research problem. Based on the premise that the most harmful deepfakes are those of the highest quality, we introduce a two-stage pipeline to identify a singer's vocal likeness. It first employs a discriminator model to filter out low-quality forgeries that fail to accurately reproduce vocal likeness. A subsequent model, trained exclusively on authentic recordings, identifies the singer in the remaining high-quality deepfakes and authentic audio. Experiments show that this system consistently outperforms existing baselines on both authentic and synthetic content.


翻译:高度逼真的歌声深度伪造技术的泛滥,对保护艺术家形象和内容真实性构成了重大挑战。在声乐深度伪造中进行自动歌手识别,为艺术家和权利持有人提供了一条有前景的途径来防御其声音的未经授权使用,但这仍然是一个开放的研究问题。基于最具危害性的深度伪造是那些最高质量伪造的前提,我们引入了一个两阶段流程来识别歌手的声乐特征。该流程首先采用一个鉴别器模型来过滤掉那些未能准确复现声乐特征的低质量伪造品。随后,一个仅在真实录音上训练的模型,对剩余的高质量深度伪造品和真实音频进行歌手识别。实验表明,该系统在真实内容和合成内容上均持续优于现有基线方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
22+阅读 · 2023年11月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员