Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges and subgraphs in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? For example, in intrusion detection, existing work seeks to detect either anomalous edges or anomalous subgraphs, but not both. In this paper, we first extend the count-min sketch data structure to a higher-order sketch. This higher-order sketch has the useful property of preserving the dense subgraph structure (dense subgraphs in the input turn into dense submatrices in the data structure). We then propose four online algorithms that utilize this enhanced data structure, which (a) detect both edge and graph anomalies; (b) process each edge and graph in constant memory and constant update time per newly arriving edge, and; (c) outperform state-of-the-art baselines on four real-world datasets. Our method is the first streaming approach that incorporates dense subgraph search to detect graph anomalies in constant memory and time.
翻译:从动态图形的图表边缘流中,我们如何以在线方式将异常分数分配给边缘和子集,以便利用恒定的时间和内存探测异常行为?例如,在入侵探测中,现有工作寻求探测异常边缘或异常子集,但并非两者兼有。在本文中,我们首先将计分草图数据结构扩展至一个较高级的草图。这个更高级的草图具有保护密集的子集结构(输入中的浓密子集图变成数据结构中的稠密子集)的有用属性。然后我们提出四种在线算法,利用这一强化的数据结构,即(a) 检测边缘和图异常;(b) 处理每个常态边和图的常态边和图集,并根据新到达的边缘不断更新时间进行,以及(c) 四个真实世界数据集的超常态基线。我们的方法是第一种流式方法,将密度子集搜索纳入在恒定的记忆和时间中检测图形异常。