Cycle rickshaw pullers are highly vulnerable to extreme heat, yet little is known about how their physiological biomarkers respond under such conditions. This study collected real-time weather and physiological data using wearable sensors from 100 rickshaw pullers in Dhaka, Bangladesh. In addition, interviews with 12 pullers explored their knowledge, perceptions, and experiences related to climate change. We developed a Linear Gaussian Bayesian Network (LGBN) regression model to predict key physiological biomarkers based on activity, weather, and demographic features. The model achieved normalized mean absolute error values of 0.82, 0.47, 0.65, and 0.67 for skin temperature, relative cardiac cost, skin conductance response, and skin conductance level, respectively. Using projections from 18 CMIP6 climate models, we layered the LGBN on future climate forecasts to analyze survivability for current (2023-2025) and future years (2026-2100). Based on thresholds of WBGT above 31.1{\deg}C and skin temperature above 35{\deg}C, 32% of rickshaw pullers already face high heat exposure risk. By 2026-2030, this percentage may rise to 37% with average exposure lasting nearly 12 minutes, or about two-thirds of the trip duration. A thematic analysis of interviews complements these findings, showing that rickshaw pullers recognize their increasing climate vulnerability and express concern about its effects on health and occupational survivability.
翻译:人力车夫在极端高温环境下极为脆弱,但其生理生物标志物在此类条件下的响应机制尚不明确。本研究通过可穿戴传感器收集了孟加拉国达卡市100名人力车夫的实时气象与生理数据,并对12名车夫进行了访谈,以探究其对气候变化的认知、感知及亲身体验。我们构建了线性高斯贝叶斯网络回归模型,基于活动强度、气象条件及人口统计学特征预测关键生理生物标志物。该模型在皮肤温度、相对心脏负荷、皮肤电导反应及皮肤电导水平四个指标上的归一化平均绝对误差分别为0.82、0.47、0.65和0.67。结合18个CMIP6气候模型的预测数据,我们将LGBN模型应用于未来气候情景,分析了当前(2023-2025年)及未来(2026-2100年)时段的职业生存能力。以湿球黑球温度超过31.1°C且皮肤温度高于35°C为风险阈值,当前已有32%的人力车夫面临高热暴露风险。至2026-2030年,该比例可能升至37%,平均暴露持续时间将接近12分钟,约占单次行程时长的三分之二。访谈资料的专题分析进一步佐证了上述发现:人力车夫普遍意识到自身对气候变化的脆弱性日益加剧,并对其健康影响及职业生存能力表示深切担忧。