We initiate the study of dynamic traffic assignment for electrical vehicles addressing the specific challenges such as range limitations and the possibility of battery recharge at predefined charging locations. We pose the dynamic equilibrium problem within the deterministic queueing model of Vickrey and as our main result, we establish the existence of an energy-feasible dynamic equilibrium. There are three key modeling-ingredients for obtaining this existence result: * We introduce a walk-based definition of dynamic traffic flows which allows for cyclic routing behavior as a result of recharging events en route. * We use abstract convex feasibility sets in an appropriate function space to model the energy-feasibility of used walks. * We introduce the concept of capacitated dynamic equilibrium walk-flows which generalize the former unrestricted dynamic equilibrium path-flows. Viewed in this framework, we show the existence of an energy-feasible dynamic equilibrium by applying an infinite dimensional variational inequality, which in turn requires a careful analysis of continuity properties of the network loading as a result of injecting flow into walks. We complement our theoretical results by a computational study in which we design a fixed-point algorithm computing energy-feasible dynamic equilibria. We apply the algorithm to standard real-world instances from the traffic assignment community illustrating the complex interplay of resulting travel times, energy consumption and prices paid at equilibrium.
翻译:我们开始研究电动车辆的动态交通分配,以解决诸如范围限制和在预定充电地点充电的可能性等具体挑战。我们在确定性排队模式Vickrey中提出了动态平衡问题,并以此作为我们的主要结果,我们确立了一个能源可行的动态平衡。从这个框架来看,我们通过应用无限维度的变异性不平等,展示了一种能源可行的动态平衡,这反过来需要仔细分析网络充装的连续性特性,以便注入流到行进中。我们用一个适当的功能空间来模拟废旧行道的能源可行性。我们引入了电动动态平衡行进流概念,将以前不受限制的动态平衡行进普遍化。从这个框架看,我们通过应用一个无限维度的变异性不平等,表明存在一种能源可行的动态动态动态平衡,这反过来需要仔细分析网络装装的连续性特性。我们利用一个适当的功能空间来模拟用过的行道的能源可行性组合。我们通过一个计算式的理论结果来补充我们的理论结果,通过一个计算式的计算性结果,我们从一个固定的动态的动态运算法,我们从一个固定的能源运算算到一个稳定的行算到一个稳定的行算。