The energy consumption of deep learning models is increasing at a breathtaking rate, which raises concerns due to potential negative effects on carbon neutrality in the context of global warming and climate change. With the progress of efficient deep learning techniques, e.g., model compression, researchers can obtain efficient models with fewer parameters and smaller latency. However, most of the existing efficient deep learning methods do not explicitly consider energy consumption as a key performance indicator. Furthermore, existing methods mostly focus on the inference costs of the resulting efficient models, but neglect the notable energy consumption throughout the entire life cycle of the algorithm. In this paper, we present the first large-scale energy consumption benchmark for efficient computer vision models, where a new metric is proposed to explicitly evaluate the full-cycle energy consumption under different model usage intensity. The benchmark can provide insights for low carbon emission when selecting efficient deep learning algorithms in different model usage scenarios.


翻译:深层学习模型的能源消耗正在以惊人的速度增长,这引起了人们的关切,因为在全球变暖和气候变化的背景下,对碳中和的潜在负面影响。随着高效深层学习技术的进展,例如模型压缩,研究人员可以以较少的参数和较少的延缓度获得高效模型。然而,大多数现有的高效深层学习方法并未明确将能源消耗视为关键业绩指标。此外,现有方法主要侧重于由此产生的高效模型的推论成本,但忽视了算法整个生命周期中显著的能源消耗。在本文件中,我们提出了高效计算机愿景模型的第一个大型能源消费基准,其中提出了在不同的模型使用强度下明确评估全周期能源消费的新指标。基准可以在不同的模型使用情景中选择高效深层学习算法时,为低碳排放提供见解。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年11月20日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
108+阅读 · 2020年2月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
16+阅读 · 2021年7月18日
Arxiv
9+阅读 · 2021年3月25日
Arxiv
108+阅读 · 2020年2月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
7+阅读 · 2017年12月28日
Top
微信扫码咨询专知VIP会员