Context: Changing a software application with many build-time configuration settings may introduce unexpected side-effects. For example, a change intended to be specific to a platform (e.g., Windows) or product configuration (e.g., community editions) might impact other platforms or configurations. Moreover, a change intended to apply to a set of platforms or configurations may be unintentionally limited to a subset. Indeed, understanding the exposure of source code changes is an important risk mitigation step in change-based development approaches. Objective: In this experiment, we seek to evaluate DiPiDi, a prototype implementation of our approach to assess the exposure of source code changes by statically analyzing build specifications. We focus our evaluation on the effectiveness and efficiency of developers when assessing the exposure of source code changes. Method: We will measure the effectiveness and efficiency of developers when performing five tasks in which they must identify the deliverable(s) and conditions under which a change will propagate. We will assign participants into three groups: without explicit tool support, supported by existing impact analysis tools, and supported by DiPiDi.


翻译:环境:改变软件应用程序,加上许多建设时配置设置,可能会产生意想不到的副作用。例如,意在针对平台(如Windows)或产品配置(如社区版本)的改变可能会影响其他平台或配置。此外,对一套平台或配置的修改可能无意中局限于一个子集。事实上,了解源代码变化的暴露是基于变化的发展方法中一个重要的减少风险步骤。目标:在这项实验中,我们试图评估DiPidi,这是我们通过静态分析构建规格来评估源代码变化暴露情况的方法的原型。我们在评估源代码变化的暴露情况时,将重点评估开发商的效能和效率。方法:我们将在他们执行五项任务时衡量开发商的效力和效率,这些任务必须确定交付品和进行变革的条件。我们将将参与者分成三个组:没有明确的工具支持,现有影响分析工具提供支持,并得到DiPidi支持。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
1+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月26日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员