Theory of mind (ToM; Premack & Woodruff, 1978) broadly refers to humans' ability to represent the mental states of others, including their desires, beliefs, and intentions. We propose to train a machine to build such models too. We design a Theory of Mind neural network -- a ToMnet -- which uses meta-learning to build models of the agents it encounters, from observations of their behaviour alone. Through this process, it acquires a strong prior model for agents' behaviour, as well as the ability to bootstrap to richer predictions about agents' characteristics and mental states using only a small number of behavioural observations. We apply the ToMnet to agents behaving in simple gridworld environments, showing that it learns to model random, algorithmic, and deep reinforcement learning agents from varied populations, and that it passes classic ToM tasks such as the "Sally-Anne" test (Wimmer & Perner, 1983; Baron-Cohen et al., 1985) of recognising that others can hold false beliefs about the world. We argue that this system -- which autonomously learns how to model other agents in its world -- is an important step forward for developing multi-agent AI systems, for building intermediating technology for machine-human interaction, and for advancing the progress on interpretable AI.
翻译:思想理论(TOM;Premack & Woodruff,1978年) 广义地指人代表他人精神状态的能力(ToM;Premack & Woodruff,1978年), 广义地指人代表他人精神状态的能力, 包括他们的愿望、 信仰和意图。 我们提议训练机器来建立这样的模型。 我们设计了一个心灵神经网络的理论 -- -- ToMnet -- -- 使用元学习来建立它所碰到的代理人的模型, 仅仅通过观察他们的行为。 通过这一过程, 它获得了一个强大的先前的代理人行为的模型, 并且能够利用少量的行为观察, 对代理人的特征和精神状态进行更丰富的预测。 我们用TOMnet来训练在简单的电网环境中工作的代理人, 显示它学会了随机、 算法和 深度强化的学习媒介网络 -- -- 并且它通过了典型的托姆任务, 例如“ Sally-Anne” 测试(Wimmer & Perner, 1983年; Baron- Cohen et et al.) 等, 通过这个过程, 承认其他人可以对世界持有虚假的信念。 我们说, 这个系统 -- -- -- 是如何自主地学习如何在数字机构间互动上建立模型的模型, 如何向前向前进, 如何建立模型, 如何发展, 是一个重要的一步。