In task allocation for real-time domains, such as disaster response, a limited number of agents is deployed across a large area to carry out numerous tasks, each with its prerequisites, profit, time window and workload. To maximize profits while minimizing time penalties, agents need to cooperate by forming, disbanding and reforming coalitions. In this paper, we name this problem Multi-Agent Routing and Scheduling through Coalition formation (MARSC) and show that it generalizes the important Team Orienteering Problem with Time Windows. We propose a binary integer program and an anytime and scalable heuristic to solve it. Using public London Fire Brigade records, we create a dataset with 347588 tasks and a test framework that simulates the mobilization of firefighters. In problems with up to 150 agents and 3000 tasks, our heuristic finds solutions up to 3.25 times better than the Earliest Deadline First approach commonly used in real-time systems. Our results constitute the first large-scale benchmark for the MARSC problem.


翻译:在实时领域的任务分配方面,例如灾害应对,有数量有限的代理机构被部署在大面积地区,以完成许多任务,每个任务都有其先决条件、利润、时间窗口和工作量。为了最大限度地增加利润,同时尽量减少时间惩罚,代理机构需要通过组建、解散和改革联盟进行合作。在本文中,我们给出了这个问题,通过联盟的组建(MARSC),多代理路由和日程安排,并表明它概括了重要的时间窗口问题。我们提出了一个二进制整形程序,并提出了解决该问题的可随时间和可伸缩的超时性。我们用伦敦公共消防队的记录创建了一个包含347588项任务的数据集和一个模拟消防员动员的测试框架。在多达150个代理和3000项任务的问题中,我们繁琐地找到的解决方案比实时系统中常用的“最晚期第一”方法高3.25倍。我们的结果构成了MARSC问题的第一个大规模基准。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
架构文摘
3+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
已删除
架构文摘
3+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Top
微信扫码咨询专知VIP会员