Recent neural-based relation extraction approaches, though achieving promising improvement on benchmark datasets, have reported their vulnerability towards adversarial attacks. Thus far, efforts mostly focused on generating adversarial samples or defending adversarial attacks, but little is known about the difference between normal and adversarial samples. In this work, we take the first step to leverage the salience-based method to analyze those adversarial samples. We observe that salience tokens have a direct correlation with adversarial perturbations. We further find the adversarial perturbations are either those tokens not existing in the training set or superficial cues associated with relation labels. To some extent, our approach unveils the characters against adversarial samples. We release an open-source testbed, "DiagnoseAdv".


翻译:最近基于神经关系的提取方法虽然在基准数据集方面取得了有希望的改进,但报告说它们很容易遭到对抗性攻击。迄今为止,努力的重点大多是生成对抗性样品或防御对抗性攻击,但对正常和对抗性样品之间的区别知之甚少。在这项工作中,我们迈出了第一步,利用基于显著方法分析这些对抗性样品。我们发现,突出的标志与对抗性干扰有直接关系。我们进一步发现,对抗性干扰要么是训练组中不存在的标志,要么是与关系标签有关的表面暗示。在某种程度上,我们的方法暴露了对抗性样品的特征。我们发布了一个公开来源的试样,即“DiagnoseAdv”。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员