The Equation-Free approach to efficient multiscale numerical computation marries trusted micro-scale simulations to a framework for numerical macro-scale reduction -- the patch dynamics scheme. A recent novel patch scheme empowered the Equation-Free approach to simulate systems containing shocks on the macro-scale. However, the scheme did not predict the formation of shocks accurately, and it could not simulate moving shocks. This article resolves both issues, as a first step in one spatial dimension, by embedding the Equation-Free, shock-resolving patch scheme within a classic framework for adaptive moving meshes. Our canonical micro-scale problems exhibit heterogeneous nonlinear advection and heterogeneous diffusion. We demonstrate many remarkable benefits from the moving patch scheme, including efficient and accurate macro-scale prediction despite the unknown macro-scale closure. Equation-free methods are here extended to simulate moving, forming and merging shocks without a priori knowledge of the existence or closure of the shocks. Whereas adaptive moving mesh equations are typically stiff, typically requiring small time-steps on the macro-scale, the moving macro-scale mesh of patches is typically not stiff given the context of the micro-scale time-steps required for the sub-patch dynamics.
翻译:高效多尺度计算法的量化-自由方法将信任的微观规模模拟结合到一个数值宏观规模削减框架 -- -- 补丁动态方案。最近一个新颖的补丁方案赋予了模拟含有宏观规模冲击的系统时的量化-无损方法以模拟宏规模冲击。然而,该计划没有准确预测冲击的形成,也无法模拟移动冲击。作为空间层面的第一步,本条款将公平-无冲击解析补丁方案嵌入一个适应性移动 meshes的经典框架,从而解决了这两个问题。我们可塑微型规模问题展示了异性非线性倾斜和混杂的分布。我们展示了移动补丁制方案的许多显著好处,包括尽管有未知的宏观规模封闭,但高效和准确的宏观规模预测。这里的量化无损益方法扩大到模拟移动、形成和合并冲击,而事先不知道冲击的存在或关闭。而适应性移动式网格方程式通常很僵硬,通常需要在宏观规模上小步步步,移动的宏观规模补丁形网状网块,鉴于所需的微观级次级动态背景,移动微观级分块一般并不僵硬。