The polyhedral model allows a structured way of defining semantics-preserving transformations to improve the performance of a large class of loops. Finding profitable points in this space is a hard problem which is usually approached by heuristics that generalize from domain-expert knowledge. Existing problem formulations in state-of-the-art heuristics depend on the shape of particular loops, making it hard to leverage generic and more powerful optimization techniques from the machine learning domain. In this paper, we propose PolyGym, a shape-agnostic formulation for the space of legal transformations in the polyhedral model as a Markov Decision Process (MDP). Instead of using transformations, the formulation is based on an abstract space of possible schedules. In this formulation, states model partial schedules, which are constructed by actions that are reusable across different loops. With a simple heuristic to traverse the space, we demonstrate that our formulation is powerful enough to match and outperform state-of-the-art heuristics. On the Polybench benchmark suite, we found transformations that led to a speedup of 3.39x over LLVM O3, which is 1.83x better than the speedup achieved by ISL. Our generic MDP formulation enables using reinforcement learning to learn optimization policies over a wide range of loops. This also contributes to the emerging field of machine learning in compilers, as it exposes a novel problem formulation that can push the limits of existing methods.


翻译:多元结构模型可以有条不紊地定义语义保存转换, 以改善大型循环周期的性能。 在这个空间找到有利可图的点是一个棘手的问题, 通常由从域专家知识中概括的超自然学处理。 最先进的超自然学现有问题配方取决于特定循环的形状, 使得很难从机器学习域中利用通用和更强大的优化技术。 在本文中, 我们提议将多面体模型中法律转换空间的形状- 创新配方作为马尔科夫决定程序( MPD) 。 该配方不是使用转换, 而是基于可能的时间表的抽象空间。 在这种配方中, 标出由不同循环中可再使用的行动构建的模型部分时间表。 有了简单的超自然学来绕过空间, 我们证明我们的配方配方足以匹配和超越现有新颖的基体格问题。 在聚体基准套件中, 我们发现这种配方的变型, 而不是利用3. 39x 模型的缩放速度, 也使得我们通过LLLLA 的升级 学习系统, 的升级为MLALA 的升级 。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
7+阅读 · 2018年12月26日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年12月3日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
相关论文
Arxiv
0+阅读 · 2021年6月16日
Arxiv
7+阅读 · 2018年12月26日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年12月3日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Top
微信扫码咨询专知VIP会员