Advances in large language models (LLMs) are accelerating discovery in molecular science. However, adapting molecular information to the serialized, token-based processing of LLMs remains a key challenge. Compared to other representations, molecular graphs explicitly encode atomic connectivity and local topological environments, which are key determinants of atomic behavior and molecular properties. Despite recent efforts to tokenize overall molecular topology, there still lacks effective fine-grained tokenization of local atomic environments, which are critical for determining sophisticated chemical properties and reactivity. To address these issues, we introduce AtomDisc, a novel framework that quantizes atom-level local environments into structure-aware tokens embedded directly in LLM's token space. Our experiments show that AtomDisc, in a data-driven way, can distinguish chemically meaningful structural features that reveal structure-property associations. Equipping LLMs with AtomDisc tokens injects an interpretable inductive bias that delivers state-of-the-art performance on property prediction and molecular generation. Our methodology and findings can pave the way for constructing more powerful molecular LLMs aimed at mechanistic insight and complex chemical reasoning.


翻译:大语言模型(LLMs)的进展正在加速分子科学领域的发现。然而,将分子信息适配于LLMs的序列化、基于分词的处理过程仍是一个关键挑战。相较于其他表示方法,分子图显式编码了原子间的连接性与局部拓扑环境,这是决定原子行为与分子性质的关键因素。尽管近期已有对整体分子拓扑进行分词的尝试,但仍缺乏对局部原子环境的有效细粒度分词,而这对确定复杂的化学性质与反应性至关重要。为解决这些问题,我们提出了AtomDisc,一种将原子级局部环境量化为结构感知的token、并直接嵌入LLM词元空间的新颖框架。实验表明,AtomDisc能够以数据驱动的方式区分具有化学意义的结构特征,从而揭示结构-性质关联。为LLMs配备AtomDisc token注入了可解释的归纳偏置,使其在性质预测与分子生成任务上实现了最先进的性能。我们的方法与发现可为构建旨在获得机理洞察与复杂化学推理能力的更强大分子LLMs铺平道路。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员