Anchor-free detectors basically formulate object detection as dense classification and regression. For popular anchor-free detectors, it is common to introduce an individual prediction branch to estimate the quality of localization. The following inconsistencies are observed when we delve into the practices of classification and quality estimation. Firstly, for some adjacent samples which are assigned completely different labels, the trained model would produce similar classification scores. This violates the training objective and leads to performance degradation. Secondly, it is found that detected bounding boxes with higher confidences contrarily have smaller overlaps with the corresponding ground-truth. Accurately localized bounding boxes would be suppressed by less accurate ones in the Non-Maximum Suppression (NMS) procedure. To address the inconsistency problems, the Dynamic Smooth Label Assignment (DSLA) method is proposed. Based on the concept of centerness originally developed in FCOS, a smooth assignment strategy is proposed. The label is smoothed to a continuous value in [0, 1] to make a steady transition between positive and negative samples. Intersection-of-Union (IoU) is predicted dynamically during training and is coupled with the smoothed label. The dynamic smooth label is assigned to supervise the classification branch. Under such supervision, quality estimation branch is naturally merged into the classification branch, which simplifies the architecture of anchor-free detector. Comprehensive experiments are conducted on the MS COCO benchmark. It is demonstrated that, DSLA can significantly boost the detection accuracy by alleviating the above inconsistencies for anchor-free detectors. Our codes are released at https://github.com/YonghaoHe/DSLA.


翻译:无锚检测器基本上将物体检测作为密集的分类和回归。对于广受欢迎的无锚检测器,常见的做法是引入一个单个的预测分支来估计本地化的质量。当我们深入到分类和质量估测的做法时,会观察到以下不一致之处。首先,对于一些被分配到完全不同标签的一些相邻样本,经过培训的模型会产生类似的分类分数。这违反了培训目标,导致性能退化。第二,发现具有较高信任度的测出捆绑盒与相应的地面试样的重叠比重要小一些。精确的本地化绑框将受到非MAximum 禁止(NMS) 程序中的不准确部分的抑制。为了解决不一致问题,建议了动态平滑的 Label 任务(DSLA) 方法。根据最初在FCOSS开发的中心度概念,提出了一种平稳的指派战略。这个标签在[0,1]中可以保持一个连续值,以便在正和负的样本中进行平稳的转换。CO-Uniion(IOU)中,在全面检测过程中可以预测降的精确度,在SLLLA 上,在进行平稳的标签下进行平稳的分类。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员