We advocate for a new statistical principle that combines the most desirable aspects of both parameter inference and density estimation. This leads us to the predictively oriented (PrO) posterior, which expresses uncertainty as a consequence of predictive ability. Doing so leads to inferences which predictively dominate both classical and generalised Bayes posterior predictive distributions: up to logarithmic factors, PrO posteriors converge to the predictively optimal model average at rate $n^{-1/2}$. Whereas classical and generalised Bayes posteriors only achieve this rate if the model can recover the data-generating process, PrO posteriors adapt to the level of model misspecification. This means that they concentrate around the true model at rate $n^{1/2}$ in the same way as Bayes and Gibbs posteriors if the model can recover the data-generating distribution, but do \textit{not} concentrate in the presence of non-trivial forms of model misspecification. Instead, they stabilise towards a predictively optimal posterior whose degree of irreducible uncertainty admits an interpretation as the degree of model misspecification -- a sharp contrast to how Bayesian uncertainty and its existing extensions behave. Lastly, we show that PrO posteriors can be sampled from by evolving particles based on mean field Langevin dynamics, and verify the practical significance of our theoretical developments on a number of numerical examples.
翻译:暂无翻译