Edge Computing enables low-latency processing for real-time applications but introduces challenges in power management due to the distributed nature of edge devices and their limited energy resources. This paper proposes a stochastic modeling approach using Markov Chains to analyze power state transitions in Edge Computing. By deriving steady-state probabilities and evaluating energy consumption, we demonstrate the benefits of AI-driven predictive power scaling over conventional reactive methods. Monte Carlo simulations validate the model, showing strong alignment between theoretical and empirical results. Sensitivity analysis highlights how varying transition probabilities affect power efficiency, confirming that predictive scaling minimizes unnecessary transitions and improves overall system responsiveness. Our findings suggest that AI-based power management strategies significantly enhance energy efficiency by anticipating workload demands and optimizing state transitions. Experimental results indicate that AI-based power management optimizes workload distribution across heterogeneous edge nodes, reducing energy consumption disparities between devices, improving overall efficiency, and enhancing adaptive power coordination in multi-node environments.
翻译:边缘计算为实时应用提供了低延迟处理能力,但由于边缘设备的分布式特性及其有限的能源资源,引入了电力管理方面的挑战。本文提出了一种基于马尔可夫链的随机建模方法,用于分析边缘计算中的电源状态转换。通过推导稳态概率并评估能耗,我们展示了人工智能驱动的预测性功率调节相较于传统反应式方法的优势。蒙特卡洛仿真验证了该模型,表明理论与实证结果高度吻合。敏感性分析揭示了不同转移概率如何影响功率效率,证实预测性调节能减少不必要的状态转换并提升系统整体响应性。我们的研究结果表明,基于人工智能的电力管理策略通过预测工作负载需求并优化状态转换,显著提高了能源效率。实验结果表明,基于人工智能的电力管理优化了异构边缘节点间的工作负载分配,减少了设备间的能耗差异,提升了整体效率,并增强了多节点环境中的自适应功率协调能力。