Multi-Agent Path Finding (MAPF) algorithms are increasingly deployed in industrial warehouses and automated manufacturing facilities, where robots must operate reliably under real-world physical constraints. However, existing MAPF evaluation frameworks typically rely on simplified robot models, leaving a substantial gap between algorithmic benchmarks and practical performance. Recent frameworks such as SMART, incorporate kinodynamic modeling and offer the MAPF community a platform for large-scale, realistic evaluation. Building on this capability, this work investigates how key planner design choices influence performance under realistic execution settings. We systematically study three fundamental factors: (1) the relationship between solution optimality and execution performance, (2) the sensitivity of system performance to inaccuracies in kinodynamic modeling, and (3) the interaction between model accuracy and plan optimality. Empirically, we examine these factors to understand how these design choices affect performance in realistic scenarios. We highlight open challenges and research directions to steer the community toward practical, real-world deployment.


翻译:多智能体路径规划(MAPF)算法正日益应用于工业仓库和自动化制造设施中,其中机器人必须在真实世界的物理约束下可靠运行。然而,现有的MAPF评估框架通常依赖于简化的机器人模型,导致算法基准与实际性能之间存在显著差距。近期框架如SMART,整合了运动动力学建模,为MAPF社区提供了一个大规模、现实评估的平台。基于此能力,本研究探讨了关键规划器设计选择在现实执行设置下如何影响性能。我们系统性地研究了三个基本因素:(1)解决方案最优性与执行性能之间的关系,(2)系统性能对运动动力学建模不准确性的敏感性,以及(3)模型准确性与规划最优性之间的相互作用。通过实证分析,我们检验了这些因素,以理解这些设计选择在现实场景中如何影响性能。我们强调了开放挑战和研究方向,以引导社区朝着实用、现实世界部署的方向发展。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员