True-time delayers (TTDs) are popular components for hybrid beamforming architectures to combat the spatial-wideband effect in wideband near-field communications. A serial and a hybrid serial-parallel TTD configuration are investigated for hybrid beamforming architectures. Compared to the conventional parallel configuration, the serial configuration exhibits a cumulative time delay through multiple TTDs, which potentially alleviates the maximum delay requirements on the TTDs. However, independent control of individual TTDs becomes impossible in the serial configuration. In this context, a hybrid TTD configuration is proposed as a compromise solution. Furthermore, a power equalization approach is proposed to address the cumulative insertion loss of the serial and hybrid TTD configurations. Moreover, the wideband near-field beamforming design for different configurations is studied for maximizing the spectral efficiency in both single-user and multiple-user systems. 1) For single-user systems, a closed-form solution for the beamforming design is derived. The preferred user locations and the required maximum time delay of each TTD configuration are characterized. 2) For multi-user systems, a penalty-based iterative algorithm is developed to obtain a stationary point of the spectral efficiency maximization problem for each TTD configuration. In addition, a mixed-forward-and-backward (MFB) implementation is proposed to enhance the performance of the serial configuration. Our numerical results confirm the effectiveness of the proposed designs and unveil that i) compared to the conventional parallel configuration, both the serial and hybrid configurations can significantly reduce the maximum time delays required for the TTDs and ii) the hybrid configuration excels in single-user systems, while the serial configuration is preferred in multi-user systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员