In this paper, we consider effective discretization strategies and iterative solvers for nonlinear PDE-constrained optimization models for pattern evolution within biological processes. Upon a Sequential Quadratic Programming linearization of the optimization problem, we devise appropriate time-stepping schemes and discrete approximations of the cost functionals such that the discretization and optimization operations are commutative, a highly desirable property of a discretization of such problems. We formulate the large-scale, coupled linear systems in such a way that efficient preconditioned iterative methods can be applied within a Krylov subspace solver. Numerical experiments demonstrate the viability and efficiency of our approach.
翻译:暂无翻译