We exhibit examples of high-dimensional unimodal posterior distributions arising in non-linear regression models with Gaussian process priors for which worst-case (`cold start') initialised MCMC methods typically take an exponential run-time to enter the regions where the bulk of the posterior measure concentrates. The counter-examples hold for general MCMC schemes based on gradient or random walk steps, and the theory is illustrated for Metropolis-Hastings adjusted methods such as pCN and MALA.
翻译:我们展示了在非线性回归模型中出现的高维单式后演模式分布的例子,在高斯进程前期,最坏的情况(“冷开始”)的超新版MCMC方法通常需要指数性运行时间才能进入后继测量大部分集中的区域。反实例显示基于梯度或随机步行步骤的一般MCM计划,而该理论则以大都会-Hosting调整方法(如PCN和MALA)为例。