The recent development of machine learning (ML) and Deep Learning (DL) increases the opportunities in all the sectors. ML is a significant tool that can be applied across many disciplines, but its direct application to civil engineering problems can be challenging. ML for civil engineering applications that are simulated in the lab often fail in real-world tests. This is usually attributed to a data mismatch between the data used to train and test the ML model and the data it encounters in the real world, a phenomenon known as data shift. However, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models to solve data shift problems. Physics-based ML models are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear equations. Physics-based ML, which takes center stage across many science disciplines, plays an important role in fluid dynamics, quantum mechanics, computational resources, and data storage. This paper reviews the history of physics-based ML and its application in civil engineering.


翻译:最近开发的机器学习(ML)和深层学习(DL)增加了所有部门的机会。 ML是一个重要的工具,可以应用于多个学科,但直接应用于土木工程问题可能具有挑战性。实验室模拟的土木工程应用的ML往往在现实世界测试中失败。这通常归因于用于培训和测试ML模型的数据与现实世界中它遇到的数据之间数据不匹配,一种被称为数据变化的现象。然而,基于物理的ML模型将数据、部分差异方程式(PDEs)和数学模型结合起来,以解决数据转移问题。基于物理的ML模型经过培训,在遵守一般非线性方程式描述的任何特定物理法则的同时,解决受监督的学习任务。基于物理的ML在许多科学学科占据中心位置,在流体动态、量子力学、计算资源和数据储存方面发挥着重要作用。本文回顾了基于物理的ML的历史及其在土木工程中的应用。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
4+阅读 · 2021年1月14日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
6+阅读 · 2019年12月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员