In this work we examine a posteriori error control for post-processed approximations to elliptic boundary value problems. We introduce a class of post-processing operator that `tweaks' a wide variety of existing post-processing techniques to enable efficient and reliable a posteriori bounds to be proven. This ultimately results in optimal error control for all manner of reconstruction operators, including those that superconverge. We showcase our results by applying them to two classes of very popular reconstruction operators, the Smoothness-Increasing Accuracy-Enhancing filter and Superconvergent Patch Recovery. Extensive numerical tests are conducted that confirm our analytic findings.
翻译:在这项工作中,我们检查了后处理近似近似对椭圆边界价值问题的事后误差控制;我们引进了一类后处理操作员,“tweaks”现有的各种后处理技术,以便能证明一个后处理技术的效率和可靠;这最终导致对各种重建操作员,包括超级凝聚者,进行最佳的误差控制;我们通过将结果应用到两类非常受欢迎的重建操作员,即平滑的加固精密过滤器和超级一致的补丁回收,来展示我们的成果;进行了广泛的数量测试,以证实我们的分析结论。