Hand gesture recognition attracts great attention for interaction since it is intuitive and natural to perform. In this paper, we explore a novel method for interaction by using bone-conducted sound generated by finger movements while performing gestures. We design a set of gestures that generate unique sound features, and capture the resulting sound from the wrist using a commodity microphone. Next, we design a sound event detector and a recognition model to classify the gestures. Our system achieves an overall accuracy of 90.13% in quiet environments and 85.79% under noisy conditions. This promising technology can be deployed on existing smartwatches as a low power service at no additional cost, and can be used for interaction in augmented and virtual reality applications.
翻译:手势识别吸引了对互动的极大关注, 因为它是直觉的和自然的。 在本文中, 我们探索了一种新型的互动方法, 通过使用手指运动产生的骨质声音进行互动。 我们设计了一套能产生独特声音特征的手势, 并用商品麦克风捕捉手腕产生的声音。 接下来, 我们设计了一个健全的事件探测器和一个识别模型来对动作进行分类。 我们的系统在安静的环境中实现了90.13%的总体精确度, 在吵闹的条件下实现了85.79%的总体精确度。 这种有希望的技术可以作为低功率的服务, 免费被运用在现有的智能观察上, 并且可以用来在强化和虚拟的现实应用中进行互动 。