Spatial data analytics systems are widely studied in both the academia and industry. However, existing systems are limited when handling a large number of moving objects and real time spatial queries. In this work, we architect a scalable and efficient system CheetahGIS to process streaming spatial queries over massive moving objects. In particular, CheetahGIS is built upon Apache Flink Stateful Functions (StateFun), an API for building distributed streaming applications with an actor-like model. CheetahGIS enjoys excellent scalability due to its modular architecture, which clearly decomposes different components and allows scaling individual components. To improve the efficiency and scalability of CheetahGIS, we devise a suite of optimizations, e.g., lightweight global grid-based index, metadata synchroniza tion strategies, and load balance mechanisms. We also formulate a generic paradigm for spatial query processing in CheetahGIS, and verify its generality by processing three representative streaming queries (i.e., object query, range count query, and k nearest neighbor query). We conduct extensive experiments on both real and synthetic datasets to evaluate CheetahGIS.


翻译:空间数据分析系统在学术界和工业界均得到广泛研究。然而,现有系统在处理大量移动对象和实时空间查询时存在局限。本研究设计了一个可扩展且高效的系统CheetahGIS,用于处理海量移动对象上的流式空间查询。具体而言,CheetahGIS基于Apache Flink Stateful Functions(StateFun)构建,这是一个采用类参与者模型的分布式流式应用编程接口。得益于其模块化架构,CheetahGIS具备卓越的可扩展性——该架构清晰解耦了不同组件,并支持各组件独立扩展。为提升系统效率与可扩展性,我们设计了一系列优化方案,例如轻量级全局网格索引、元数据同步策略及负载均衡机制。同时,我们为CheetahGIS中的空间查询处理构建了通用范式,并通过处理三类代表性流式查询(即对象查询、范围计数查询和k近邻查询)验证了其普适性。我们在真实与合成数据集上进行了大量实验以评估CheetahGIS的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年6月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员