Small and medium-sized enterprises (SMEs) represent 99.9% of U.S. businesses yet remain systematically excluded from AI due to a mismatch between their operational scale and modern machine learning's data requirements. This paper introduces SmallML, a Bayesian transfer learning framework achieving enterprise-level prediction accuracy with datasets as small as 50-200 observations. We develop a three-layer architecture integrating transfer learning, hierarchical Bayesian modeling, and conformal prediction. Layer 1 extracts informative priors from 22,673 public records using a SHAP-based procedure transferring knowledge from gradient boosting to logistic regression. Layer 2 implements hierarchical pooling across J=5-50 SMEs with adaptive shrinkage, balancing population patterns with entity-specific characteristics. Layer 3 provides conformal sets with finite-sample coverage guarantees P(y in C(x)) >= 1-alpha for distribution-free uncertainty quantification. Validation on customer churn data demonstrates 96.7% +/- 4.2% AUC with 100 observations per business -- a +24.2 point improvement over independent logistic regression (72.5% +/- 8.1%), with p < 0.000001. Conformal prediction achieves 92% empirical coverage at 90% target. Training completes in 33 minutes on standard CPU hardware. By enabling enterprise-grade predictions for 33 million U.S. SMEs previously excluded from machine learning, SmallML addresses a critical gap in AI democratization. Keywords: Bayesian transfer learning, hierarchical models, conformal prediction, small-data analytics, SME machine learning


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员