Federated Learning (FL) distributes model training across clients who retain their data locally, but this architecture exposes a fundamental vulnerability: Byzantine clients can inject arbitrarily corrupted updates that degrade or subvert the global model. While robust aggregation methods (including Krum, Bulyan, and coordinate-wise defenses) offer theoretical guarantees under idealized assumptions, their effectiveness erodes substantially when client data distributions are heterogeneous (non-IID) and adversaries can observe or approximate the defense mechanism. This paper introduces SpectralKrum, a defense that fuses spectral subspace estimation with geometric neighbor-based selection. The core insight is that benign optimization trajectories, despite per-client heterogeneity, concentrate near a low-dimensional manifold that can be estimated from historical aggregates. SpectralKrum projects incoming updates into this learned subspace, applies Krum selection in compressed coordinates, and filters candidates whose orthogonal residual energy exceeds a data-driven threshold. The method requires no auxiliary data, operates entirely on model updates, and preserves FL privacy properties. We evaluate SpectralKrum against eight robust baselines across seven attack scenarios on CIFAR-10 with Dirichlet-distributed non-IID partitions (alpha = 0.1). Experiments spanning over 56,000 training rounds show that SpectralKrum is competitive against directional and subspace-aware attacks (adaptive-steer, buffer-drift), but offers limited advantage under label-flip and min-max attacks where malicious updates remain spectrally indistinguishable from benign ones.
翻译:联邦学习(FL)将模型训练分布到保留本地数据的客户端,但这种架构暴露了一个根本性漏洞:拜占庭客户端可能注入任意损坏的更新,从而降低或破坏全局模型性能。尽管鲁棒聚合方法(包括Krum、Bulyan及坐标级防御)在理想化假设下提供理论保证,但当客户端数据分布呈现异质性(非独立同分布)且攻击者能够观察或近似防御机制时,其有效性会大幅削弱。本文提出SpectralKrum,这是一种融合谱子空间估计与基于几何近邻选择的防御方法。其核心洞见在于:尽管存在客户端间的异质性,良性优化轨迹仍会集中在可通过历史聚合估计的低维流形附近。SpectralKrum将传入的更新投影至该学习到的子空间,在压缩坐标中应用Krum选择,并过滤正交残差能量超过数据驱动阈值的候选更新。该方法无需辅助数据,完全基于模型更新进行操作,并保持联邦学习的隐私特性。我们在CIFAR-10数据集上采用狄利克雷分布的非独立同分布划分(α=0.1),针对七种攻击场景下的八种鲁棒基线方法评估SpectralKrum。超过56,000轮训练的实验表明,SpectralKrum在面对方向性和子空间感知攻击(自适应转向攻击、缓冲漂移攻击)时具有竞争力,但在标签翻转攻击和最小最大攻击下优势有限,因为此类恶意更新在谱特征上与良性更新难以区分。