We propose a novel method to extract global and local features of functional time series. The global features concerning the dominant modes of variation over the entire function domain, and local features of function variations over particular short intervals within function domain, are both important in functional data analysis. Functional principal component analysis (FPCA), though a key feature extraction tool, only focus on capturing the dominant global features, neglecting highly localized features. We introduce a FPCA-BTW method that initially extracts global features of functional data via FPCA, and then extracts local features by block thresholding of wavelet (BTW) coefficients. Using Monte Carlo simulations, along with an empirical application on near-infrared spectroscopy data of wood panels, we illustrate that the proposed method outperforms competing methods including FPCA and sparse FPCA in the estimation functional processes. Moreover, extracted local features inheriting serial dependence of the original functional time series contribute to more accurate forecasts. Finally, we develop asymptotic properties of FPCA-BTW estimators, discovering the interaction between convergence rates of global and local features.
翻译:我们提出了一种新颖的方法来提取功能时间序列的全球和地方特征。关于整个功能领域主要变化模式的全球特征,以及功能领域特别短间隔内功能差异的当地特征,在功能数据分析中都很重要。功能主要组成部分分析虽然是一个关键特征提取工具,但只侧重于捕捉主要全球特征,忽视高度局部性特征。我们引入了FPCA-BTW方法,该方法最初通过FPCA提取功能数据的全球特征,然后通过波盘临界值(波盘系数)提取本地特征。我们利用蒙特卡洛模拟,以及木材板近红外光谱数据的经验应用,说明拟议方法优于竞争方法,包括FPCA和稀有的FPCA在估计功能进程中的竞争性方法。此外,提取原始功能时间序列依赖性的本地特征,有助于更准确的预测。最后,我们开发了FPCA-BTW估计器(波盘)系数的零点特性,发现了全球和本地特征汇合率之间的相互作用。